THEORETICAL AND EXPERIMENTAL STUDY OF AMMONIA CONDENSATION HEAT TRANSFER IN AIR-COOLED MESOCHANNEL HEAT EXCHANGERS

Anica ILIE, Rodica DUMITRESCU, Florea CHIRIAC
Technical University for Civil Engineering - Bucharest, ROMANIA
B-dul Pache Protopopescu nr.66, tel:0212532259
anicailie@eits.mediasat.ro

ABSTRACT

A mathematical model is formulated in this paper for the prediction of the heat rejection rate, assuming that the total heat transfer area of the mesochannel condenser is made up of 2 different areas, corresponding to superheated vapor state and the two-phase flow state. Each of these areas is considered as an independent heat exchanger (Mamani et al., 1999).

Maximum heat rejection rate represents the criteria used in order to optimize the geometrical configuration of the condenser. This theoretical study resulted in an optimized geometrical configuration of the mesochannel condenser (Heun et al., 1996a; Heun et al., 1996b). Experimental research has been carried out using a mesochannel condenser of optimized geometrical configuration.

The authors of the present paper develop a comparative analysis of theoretical vs. experimental heat rejection rate and heat transfer coefficient for an ammonia air-cooled mesochannel condenser.

REFERENCES